Effects of extensional rates on characteristic scales of two-dimensional turbulence in polymer solutions
نویسنده
چکیده
In order to study the effects of extensional viscosities on turbulent drag reduction, experimental studies using two-dimensional turbulence have been made. Anisotropic structures and variations of energy transfer induced by polymers are considered. Polyethyleneoxide and hydroxypropyl cellulose having different flexibility, which is due to different characteristics of extensional viscosity, are added to 2D turbulence. Variations of the turbulence were visualized by interference patterns of 2D flow, and were analysed by an image processing. The effects of polymers on turbulence in the streamwise and normal directions were also analysed by 2D Fourier transform. In addition, characteristic scales in 2D turbulence were analysed by wavelet transform.
منابع مشابه
The effect of step-stretch parameters on capillary breakup extensional rheology (CaBER) measurements
Extensional rheometry has only recently been developed into a commercially available tool with the introduction of the capillary breakup extensional rheometer (CaBER). CaBER is currently being used to measure the transient extensional viscosity evolution of mid to low-viscosity viscoelastic fluids. The elegance of capillary breakup extensional experiments lies in the simplicity of the procedure...
متن کاملParametric study of a viscoelastic RANS turbulence model in the fully developed channel flow
One of the newest of viscoelastic RANS turbulence models for drag reducing channel flow with polymer additives is studied in different flow and rheological properties. In this model, finitely extensible nonlinear elastic-Peterlin (FENE-P) constitutive model is used to describe the viscoelastic effect of polymer solution and turbulence model is developed in the k-ϵ-(ν^2 ) ̅-f framework. The geome...
متن کاملExtensional opto-rheometry with biofluids and ultra-dilute polymer solutions
Complex fluids containing long polymer chains exhibit measurably large resistance to stretching or extensional flows, due to additional stresses generated by the extensional deformation of the underlying fluid microstructure. Understanding and quantifying the response of such elastic fluids to extensional flows is necessary for optimizing fluid composition for technological applications like in...
متن کامل‘Beads on a String’ Structures and Extensional Rheometry using Jet Break-up
1. Introduction: Surface tension driven break-up of cylindrical fluid elements into droplets plays a crucial role in the use or processing of many multicomponent complex fluids like paints, inks, insecticides, cosmetics, food, etc [1, 2]. These industrial fluids are typically formulated using dilute polymer solutions, and are exposed to a wide range of shear and extension rates. Since the polym...
متن کاملThermo-mechanical properties of polymer nanocomposites reinforced with randomly distributed silica nanoparticles- Micromechanical analysis
A three-dimensional micromechanics-based analytical model is developed to study thermo-mechanical properties of polymer composites reinforced with randomly distributed silica nanoparticles. Two important factors in nanocomposites modeling using micromechanical models are nanoparticle arrangement in matrix and interphase effects. In order to study these cases, representative volume element (RVE)...
متن کامل